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Abstract
A new approach to the reverse Monte Carlo analysis of total scattering data
from polycrystalline materials is presented. The essential new feature is
the incorporation of an explicit analysis of the Bragg peaks using a profile
refinement, taking account of the instrument resolution function. Other
new features including fitting data from magnetic materials, modelling lattice
site disorder and new restraint and constraint options. The new method is
demonstrated by a brief review of studies carried out during its development.
The new program RMCProfile represents a significant advance in the analysis
of polycrystalline total scattering data, especially where the local structure is to
be explored within the true constraints of the long-range average structure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The development of the reverse Monte Carlo (RMC) method [1, 2] was strongly motivated by
the need for a tool to develop models of the structures of liquid and amorphous phases from
neutron and x-ray total scattering data. These states of matter are unlike crystalline materials,
for which Bragg peak positions and intensities can provide information about the crystal lattice
and the average positions of atoms within the crystal unit cell. The RMC method involves
adjusting the positions of a large number of atoms in an ensemble guided by the comparison of
the calculated total scattering pattern and/or the pair distribution function with the experimental
data, using a Monte Carlo algorithm.

Although the RMC method was envisaged as a tool for the study of liquid and amorphous
materials, it has been applied to the study of crystalline materials and in particular to
the study of disordered crystals, where there is often a significant difference between the
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long-range average structure and the short-range structure [3–6]. Examples include fast-
ion conductors, orientationally disordered molecular crystals and framework structures with
orientational disorder of the linked atomic polyhedra. The RMC approach can be used in its
standard mode [1], but this both minimizes and degrades the value of the specific information
contained within the Bragg peaks. The explicit use of the Bragg peaks is important because
they contain direct information about the mean distribution of atom positions in the unit cell,
which in crystallographic terms is represented by mean positions and displacement distribution
functions, the latter of which are often represented by Gaussian functions. This is in contrast
to the total scattering data, which contain information about the pair distribution functions. By
combining the two types of data it is possible to obtain information about both the long-range
and short-range order of a structure. In disordered crystalline materials, the short-range order
will represent large-amplitude local fluctuations of the atoms away from their mean positions.
The use of Bragg scattering intensities also allows the RMC method to make use of the three-
dimensional nature of Bragg diffraction. Although with polycrystalline samples the three-
dimensional Bragg scattering is projected onto a one-dimensional measurement, it is possible
to identify a three-dimensional scattering vector Qhkl with each reflection, just as Rietveld
refinement [7] of powder diffraction data gives three-dimensional structural information.

New instruments at neutron spallation sources and x-ray synchrotron sources are now
providing total scattering data of very high quality to large values of the scattering vector Q.
One such instrument is the general materials diffractometer (GEM) at ISIS [8]. This instrument
has been optimized to study both crystalline and amorphous materials and can provide very
high-quality powder diffraction data to a Qmax of 50 Å

−1
. Clearly any new RMC method

needs to be able to fully exploit these data to provide the most accurate information about the
polycrystalline materials being studied.

There have been two adaptations of the RMC method for the study of polycrystalline
materials [3, 5] and these will be discussed below. In this article a third adaptation is presented,
which is based on profile fitting of the Bragg diffraction data [4]. This new method encompasses
the key capabilities of the previous versions and for high-Q data from neutron spallation and
x-ray synchrotron sources will supersede them in most applications. For completeness, we
note that the PDFfit method [9] has also been used to study local disorder within crystalline
materials. PDFfit is a ‘real-space Rietveld’ method with particular applicability to areas
such as Jann–Teller distortions in perovskites and nanocrystalline materials (see Egami and
Billinge [10] for further details).

The remainder of the paper is organized as follows. First the basic formalism underpinning
the RMC methods is set out and previous RMC methods specifically designed for crystalline
materials are described. This is followed by a detailed description of the new RMC method
(which is incorporated into the program RMCProfile) and its capabilities. Finally a set of
example studies using this new method is presented.

2. Formalism

2.1. Neutron total scattering

It is useful at the outset to outline the formalism of total scattering; here we follow the
formalism reviewed by Keen [11]. The total scattering intensity is given by

1

N

dσ

d�
= F(Q) +

n∑

j=1

c j b2
j (1)
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where 4π
∑

j c j b2
j is the total scattering cross-section of the material and the summation is

over the n atom types. There are N atoms in the material and c j is the proportion of atom type
j . F(Q), the total scattering structure factor, is related to the total radial distribution function,
G(r), by the Fourier transforms

F(Q) = ρ0

∫ ∞

0
4πr 2G(r)

sin Qr

Qr
dr (2)

G(r) = 1

(2π)3ρ0

∫ ∞

0
4π Q2 F(Q)

sin Qr

Qr
dQ (3)

with average atom number density ρ0 = N/V (in atoms Å
−3

). G(r) is defined by the partial
radial distribution functions gi j(r):

G(r) =
n∑

i, j=1

ci c j bi b j
(
gi j(r) − 1

)
(4)

where

gi j(r) = ni j(r)

4πr 2 drρ j
. (5)

ni j (r) are the number of particles of type j between distances r and r + dr from a particle
of type i , and ρ j = c jρ0. It is common to use either of two additional correlation functions
as alternative representations to G(r): the differential correlation function, D(r), and the total
correlation function, T (r), defined as:

D(r) = 4πrρ0G(r) (6)

T (r) = 4πrρ0

⎡

⎣G(r) +
(

n∑

i=1

ci bi

)2
⎤

⎦ . (7)

These equations can be adapted for x-ray diffraction, as discussed, for example, by Keen [11].

2.2. General RMC method

The RMC method uses the Metropolis Monte Carlo algorithm to produce atomic configurations
that are consistent with experimental data. Atoms in the configuration are selected at random
and then moved by a random amount. Instead of changing the potential energy of the
configuration the fit to the experimental data is used to determine if each move is accepted
or rejected. In the traditional RMC approach, either or both of F(Q) or G(r) are compared
with experimental data during the minimization process.

The calculated form of F(Q) is obtained by Fourier transformation of G(r) calculated
from the RMC configuration, and hence the range is limited by the size of the RMC
configuration. The consequence of this limited r range is that the Bragg peaks in the calculated
F(Q) will be broadened. Hence, this calculated F(Q) function cannot be compared with the
experimental data until the data have been degraded by convolution with a box function defined
by the dimensions of the configuration:

Fbox(Q) = 1

π

∫ ∞

−∞
Fexpt(Q′)

sin L(Q − Q′)/2

Q − Q′ dQ′ (8)

where L is the smallest dimension of the RMC configuration and defines the upper limit of the
calculated G(r). Hence, in the RMC simulation, it is the broadened experimental Fbox(Q) that
is compared with the calculated transform of G(r).

3
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The comparison between the calculated functions and experimental data is formalized by
defining an agreement function:

χ2
RMC =

∑

j

χ2
j (9)

where χ2
j is the agreement factor for data type j . So for the total scattering data we have the

following two agreement factors:

χ2
F(Q) =

∑

j

[
Fcalc(Q j) − Fbox(Q j)

]2
/σF(Q)2(Q j ) (10)

χ2
G(r) =

∑

j

[
Gcalc(r j ) − Gexpt(r j )

]2
/σG(r)2(r j ) (11)

where in principle the σ parameters represent standard errors on individual data values.
The RMC method can also incorporate restraints, in which any calculated quantity f calc

can be compared with a required value f req. Common examples of such values are bond
lengths and bond angles [12, 13], where the former may be required to equal the midpoint
of the corresponding peak in G(r) and the latter may equal an ideal angle for a particular type
of polyhedra.

Such restraints have been applied to simulations of silica phases, where the values of
the Si–O bond lengths are restrained to be kept close to the mean value given by G(r), and
the values of the O–Si–O bond angles are restrained to be kept close to the ideal tetrahedral
angle [12]. The restraints are used to define a third agreement function:

χ2
f =

∑

k

wk
[

f calc
k − f req

k

]2
(12)

where wk is a weighting factor and its value could reflect a desired spread of values of f
about the required value, or gives a relative weighting to this restraint with respect to other
contributions to χ2

RMC.
Since the RMC method is a stochastic approach it produces configurations with the

maximum entropy and thus the maximum disorder allowable within the constraints of the
data. In the early stages of minimization from an ordered crystalline starting configuration the
method will mainly disorder the atoms; at this point some ‘damage’ may be introduced into the
structure. This ‘damage’—such as broken bonds, distorted polyhedra or displaced cations—
will mostly be ‘healed’ later on in the minimization as equilibrium is approached. However,
since the weighting of any individual atom is quite low, some damage can remain and may also
lead to extended regions of offset atoms. To try to minimize these effects it is often useful to use
restraints and constraints to guide the early stages of minimization to produce more physically
acceptable configurations.

3. Previous approaches to RMC modelling of polycrystalline materials

The problem of the degradation of the information contained within the Bragg peaks
of polycrystalline materials as encapsulated in equation (8) has been tackled using two
approaches. The first, due to Mellergård and McGreevy [5] avoids the handling of G(r)

completely. Instead, the three-dimensional function S(Q) is calculated from the three-
dimensional model:

S(Q) =
∣∣∣∣∣
∑

j

b j exp
(
iQ · r j

)
∣∣∣∣∣

2

(13)
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where b j is the coherent scattering length of the j th atom. The values of Q that can be used
are defined by the dimensions of the model. The complete set of values of S(Q) are collapsed
onto the one-dimensional projection for a polycrystalline sample and broadened according to
the instrumental resolution function to give the calculated F(Q) used in equation (10). The
advantage of this approach is that it gives a proper comparison of the Bragg scattering in F(Q).
The disadvantage is that the computational demands scale as the cube power of the Qmax value
of the data being fitted. Hence, for data with a large maximum Q (such as is obtainable at
neutron spallation sources) this approach is not suitable. This method was implemented into
the RMCPOW program.

An alternative approach has been used [3]. In this approach we extract the intensities of
the Bragg peaks from the diffraction data using the Pawley method [14]. We then define a new
agreement factor to be incorporated into equation (9):

χ2
Bragg =

∑

hkl

∣∣|Fcalc(hkl)|2 − s|Fexpt(hkl)|2∣∣2 /σ 2
hkl (14)

where the structure factor is given in the normal way:

Fexpt(hkl) = 1

N

∑

j

b j exp(iQhkl · r j ) (15)

and Qhkl is the scattering vector of the hkl Bragg reflection. The parameter s in equation (14)
is a scale factor, which is treated as an adjustable parameter in the RMC method (as described
in more detail by Tucker et al [3]). This approach has been implemented in the program
RMCBragg, which is based on the original RMCA program of McGreevy and Pusztai [1].

The advantages of this approach are that there are no significant computational overheads
and that it allows us to take full account of the form of G(r) in the RMC simulation. The main
disadvantage is that the overlapping of Bragg peaks in the diffraction pattern means that we
cannot make maximum use of the Bragg diffraction information.

4. RMCProfile: a profile refinement approach to the RMC analysis for polycrystalline
materials

The disadvantages of the previous approaches have now been overcome by developing a new
implementation of the RMC method that incorporates a profile fitting of the Bragg diffraction
pattern. In time-of-flight instruments, it is common to reduce the diffraction data to a corrected
function of flight time Iexpt(t), where t is the neutron flight time. We define a corresponding χ2

contribution to equation (9):

χ2
profile =

∑

j

[
Icalc(t j ) − s′ Iexpt(t j )

]2
/σI (i)2 (t j) (16)

where

Icalc(t j ) =
∑

hkl

Lhkl |F(hkl)|2 Rhkl (t j − thkl ) + B(t j). (17)

Lhkl is the Lorentz factor of the hkl reflection, Rhkl (t j − thkl ) is the peak shape of the
hkl reflection arising from the instrument resolution and F(hkl) is the structure factor of
equation (15). s′ is a scale factor and B(t) is the background in the diffraction pattern, which
arises from the diffuse scattering component of the total scattering. The sum is over all hkl,
including symmetry related sets. We also include the hkl values for systematically absent
reflections—in so doing we ensure that the RMC simulation is able to reproduce part of the
translational symmetry.

5
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The values of s ′, the coefficients that define B(t), and the coefficients that define
Rhkl (t j − thkl ) can be obtained by a preliminary analysis of the Bragg diffraction pattern using
the Rietveld [7], Pawley [14] or Le Bail [15] methods as incorporated into programs such as
GSAS [16]. The same analysis will give the lattice parameters which are needed to construct the
initial RMC configuration, and to give the values of the positions of the Bragg peaks, thkl . The
values of s ′ and B(t) are not adjusted during the RMC refinement process.

The new approach has been incorporated in the program RMCProfile, which is a
significant modification of RMCBragg [3]. Additionally, the program has an option to include
the resolution function in the calculation of F(Q). This is useful for high-precision studies
since without this the fits to F(Q) and the high-r region of G(r) will not be consistent with
the fit to the Bragg data (which necessarily include the resolution function). This is because
the Bragg peaks are experimentally broadened in Fexpt(Q) but not in Fcalc(Q) in equation (10).
Also, if Gexpt(r) is obtained via direct Fourier transformation of Fexpt(Q), then the instrument
resolution will dampen the high-r amplitude and this region of Gexpt(r) will not agree perfectly
with Gcalc(r) (which is obtained directly from the RMC configuration). This can be overcome
by using an inverse method such as MCGRtof [17] to obtain Gexpt(r) and by convolving Fcalc(Q)

with the instrument resolution in RMCProfile. However, the resolution function correction is
computationally costly and it is often preferable to use this facility only in the final stages of
an RMCProfile refinement or only for large RMC models (where the box convolution effect
is less dominant—see equation (8)).

As with all refinement methods, RMCProfile is only as effective as the quality of the data
provided. That said, RMCProfile may provide some physical insight even when applied to
data of limited extent, e.g. F(Q) with low Qmax. However, the best results will always be
obtained from RMCProfile refinements of high-quality data sets (e.g. I (t), F(Q) and G(r)

refined simultaneously).

5. Additional features of RMCProfile

5.1. Polyhedral restraints

As described earlier it is possible to include additional data-based restraints during an RMC
refinement. These are implemented in RMCProfile in the form of polyhedral restraints.
At present a number of different polyhedral restraints have been implemented for various
combinations of polyhedra and specific molecular configurations. Each restraint is for a specific
type of system rather than a generic restraint definable by the user; this has been done for
simplicity of coding, the use of existing code and for speed of implementation.

The contribution of these restraints to χ2 typically has the form given here:

χ2
Restraint = wbond

∑

bonds

(rbond − Rbond)
2 + wangle

∑

angles

(θpoly − �poly)
2 (18)

where wbond and wangle are the weighting of the bond and angle restraints, Rbond and �poly are
the ideal polyhedral bond distances and angles, respectively, and the summation is over all the
bond distances rbond and angles θpoly in the configurations. It is implicit within this formulation
that atoms linked by these restraints cannot move apart without penalty. It is therefore possible
to build and maintain a network topology with these restraints, if appropriate.

The weights should be set low enough to ensure that the data and not the restraint determine
the final polyhedral shape, otherwise the low-r data in G(r) are effectively ignored. This can
be easily checked when fitting the radial distribution function. Figure 1 shows fits to the T (r)

function of a system that contains both tetrahedra and octahedra. The fit on the left-hand side

6
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1.6 1.8 2.0 2.2 1.6 1.8 2.0 2.2

Over restrained Correctly restrained

r(Å) r(Å)

Figure 1. Example of RMCProfile fit (blue dashed line) where the polyhedral restraints has been
over-weighted and correctly weighted. The data being fitted (red solid line) is from ZrW2O8, the
first peak in the distribution describes the distribution of W–O correlations and the second peak the
Zr–O correlations.

of the figure was obtained with the restraint weighting set too high and the fit on the right-
hand side was obtained after relaxing the weighting sufficiently. With the correct weighting the
actual shape of the peaks in the distribution are determined by the data and the restraint simply
helps to guide the minimization process.

5.2. Distance window constraint

While the polyhedral restraint is very useful, it is not suitable for all systems, especially when
atoms are not in polyhedra or where the aim is to investigate the overall atomic motion in
the system such as for phonon calculations (see Goodwin et al [18, 19]). For these cases
a distance window constraint has been developed, as an extension of the standard closest
approach constraint in RMC. This constraint is similar to the ‘fixed-neighbour constraints’
(FNCs) implemented in RMC++ [20].

In addition to specifying the closest that two atom types can come together, the user
can also specify the furthest that two atom types are allowed to move apart. In this way
windows of configuration space are defined within which the atoms are allowed to move. When
RMCProfile is first run a neighbour list of all the atoms that are within the defined distance
windows is generated and this is retained throughout the refinement unless deleted. Hence, the
sizes of the windows can subsequently be expanded or reduced but the atoms being constrained
by them remain the same.

5.3. Magnetic S(Q) and Bragg profile

The RMCProfile program is able to refine magnetic structures, whereby each atomistic
configuration is paired with a supercell spin configuration. The positions of the magnetic
moments in the spin configuration are determined by the corresponding positions in the
atomistic configuration. Each RMC move then involves either a change in atomic position
or magnetic moment orientation. The relative frequency ρspin of each choice is left as a
user-definable parameter. It is often useful to employ the special values ρspin = 0, 1 during
the early stages of structure refinement to enable the nuclear and magnetic structures to
refine independently. At later stages, an intermediate value (usually ρspin � 0.2) is used;
this value can be refined automatically ‘on the fly’ via an inbuilt feedback mechanism.
Naturally, displacement moves of non-magnetic species do not affect the magnetic scattering

7
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functions, nor do spin displacement moves of magnetic species affect the nuclear scattering
functions. Consequently the only significant additional computational cost is the translations
of magnetic atoms, whereupon changes in both nuclear and magnetic scattering functions must
be calculated.

Spin orientation changes are implemented within RMCProfile as follows. The orientation
of each spin j is treated as a normalized spin vector σ j . A random spin move vector m, whose
magnitude mmax determines the maximum change in spin orientation and is determined by the
user, is added to σ j and the resultant vector renormalized to give the new spin orientation σ ′

j .
The probability distribution associated with this algorithm has its maximum at a move size of
mmax, and so it is usually appropriate to limit the size of this parameter to a relatively modest
value (about 0.1).

In order to calculate the contribution of the magnetic scattering Smag(Q) to the scattering
factor, it is necessary to consider not only the relative positions of each pair of magnetic species,
but also the relative orientations of their spins. Such a formalism was given originally by Blech
and Averbach [21], and was subsequently developed by Keen and McGreevy [22]. It involves
two distinct correlation functions 〈μx · μx 〉r and 〈μy · μy〉r , which treat those components of
the magnetic moment parallel to (subscript x) and perpendicular to (subscript y) the vector that
joins the centres of the atoms separated by a distance r . These are treated separately as they
give rise to different effects on the scattering function, and are calculated explicitly using the
relationship

〈μ ·μ〉r = nμ(r)

4πr 2drρcM
. (19)

Here nμ(r) is the sum of μ(0) · μ(r) for those magnetic atoms whose distance from a central
magnetic atom is between r and r + dr , averaged over all magnetic atoms as centres, cM is the
concentration of the relevant magnetic species and ρ is the number density of magnetic atoms.
The notation of Blech and Averbach uses the two correlation functions:

A(r) = 〈μy ·μy〉r (20)

B(r) = [2〈μx ·μx 〉r − 〈μy · μy〉r ]. (21)

These quantities are related to Smag(Q) by:

Smag(Q) = 2

3
cM

[
e2γ

2mec2
μ f (Q)

]2

+ 4πρcM

[
e2γ

2mec2
f (Q)

]2

×
∫

r 2

{
A(r)

sin Qr

Qr
+ B(r)

[
sin Qr

(Qr)3
− cos Qr

(Qr)2

]}
dr, (22)

where e, γ , me and c carry their usual meanings, and μ is the magnetic moment [21, 22].
The first term on the right-hand side of this equation represents the paramagnetic scattering
contribution and has no dependency on the orientations of the spins within the sample. The
second term is the correlated magnetic scattering contribution. This formalism is readily
extended to include contributions from more than one type of magnetic species; one requires a
pair of correlation functions Ai j(r) and Bi j(r) for each pair i, j of magnetic species.

The magnetic contribution to the Bragg intensities is calculated using what is also a
standard approach [4]. The key equation is

I (Q) = 1

N

∣∣∣∣∣
∑

j

q j p j(Q)〈exp(iQ · r j )〉
∣∣∣∣∣

2

, (23)

where the magnetic interaction vector q j is given by

q j = σ j − Q(Q · σ j)

Q2
. (24)

8
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The magnetic scattering amplitudes p j(Q) are related to the magnetic form factors f j (Q):

p j(Q) = e2γ

2mec2
μ j f j (Q). (25)

The Bragg intensities calculated in this way can be converted into a Bragg profile function via
equation (17).

5.4. Lattice site disorder

For systems where there is lattice site disorder or vacancies in the structure, moves only
involving atom translations may not be sufficient to produce an acceptable atomic configuration
of the crystal structure. This is because atoms may not be able to move past neighbouring atoms
or indeed will just have to reorder over larger distances than are possible during a realistic
minimization run. For these reasons a move which swaps a pair of atoms has been implemented
in RMCProfile.

The two atom types which may be exchanged are defined by the user together with the ratio
of swap moves to translational moves during the RMC minimization. The relative frequency of
these moves needs to be tuned to allow enough local relaxation around each atom after a swap
move. The exact ratio will depend on the system and the stage of minimization, but typically
swapping atoms every fifth move is a good starting value. To ensure this implementation
worked correctly various tests were carried out, details of one of these tests is given in the
appendix.

5.5. Availability of the RMCProfile code

Further details about the RMCProfilemethod can be found on the RMC website [23] together
with the program, documentation, user manual and a set of example files. The website
also contains many useful programs for the visualization and analysis of the results from
RMCProfile refinements.

6. Examples of RMCProfile

While RMCProfile has been under development it has been used to study a number of systems.
The requirements of these various systems have driven the developments described in the
previous sections. In this section a brief summary of some of these studies is given to illustrate
the potential of RMCProfile for the analysis of total scattering data.

6.1. The molecular crystal SF6

RMCProfile was first tested on neutron total scattering data obtained from two phases of the
molecular crystal SF6 measured with the GEM diffractometer at ISIS. The disordered phase
(96–230 K) has a body-centred cubic structure with one molecule at each lattice point. Below
96 K, the ordered phase has a monoclinic structure with six molecules in the unit cell [24].

RMC refinements of both phases using the program RMCProfile were carried out using
models of 10 × 10 × 10 unit cells, with lattice parameters obtained from Rietveld refinements
using the GSAS program. The χ2

Restraints functions contained restraints on the S–F bond lengths
(values for the required bond lengths being taken from the D(r) functions) and with 90◦
restraints on the F–S–F bond angles.

The results of this study have been published elsewhere [4]; here only the fits to the
data and the resulting configurations are reproduced. Figure 2 shows the QF(Q) and D(r)

9
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Figure 2. Neutron total scattering structure factor QF(Q) (left), pair correlation functions D(r)
(middle) and Bragg profile (right) for the two phases of SF6 at 190 K (top row) and 50 K
(bottom row). The fits obtained using the RMCProfile program are shown by the blue solid line.
Measurements were obtained using different banks of detectors, and these are shown separately for
the F(Q) data.

functions, the diffraction patterns for the two phases of SF6 and the fits obtained from the RMC
refinements. The key point here is that all the data have been fitted simultaneously with the
same atomistic model. Slices from the resultant configurations are shown in figure 3.

The slice of the 50 K configuration clearly shows the SF6 octahedra; their integrity during
fitting has been maintained with a polyhedral restraint while their final shape and level of
distortion is determined by the fit to the data. It is remarkable that this slice of the configuration
shows the correct ordered monoclinic arrangement of the octahedra, especially since RMC is a
stochastic method and if it can disorder the octahedra within the constraints of the data it will.
The fact that the configuration is highly ordered is entirely due to the data, and particularly due
to the inclusion of the Bragg profile in the fitting.

It is perhaps natural to ask if the system is in fact over-constrained with no room for
disorder in the models. This may be dispelled by inspection of the configuration slice at 190 K
in figure 3. Here the octahedra are still intact but with a high degree of orientational disorder
appropriate for the cubic phase of SF6.

6.2. SrTiO3

Strontium titanate has been the subject of many studies. At room temperature it has a cubic
perovskite crystal structure consisting of TiO6 octahedra linked by their corners, with the
strontium cations sitting in the interstices of the TiO6 network. On cooling below 105 K the
structure goes through a displacive phase transition to a tetragonal phase, the result of a ∼2◦
octahedral tilt and an accompanying distortion. Pictures of the two average structures are shown
in figure 4.

The aim of the RMCProfile investigation was to determine if such a small effect could
be seen within the configurations, and if so what other information could be gained. The full
results of this study were published in the last RMC special edition [25]; here just one of the
results is reproduced.

10
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Figure 3. Molecular configurations of the two phases of SF6 obtained using the RMC program
RMCProfile. Molecules are shown as octahedra. The configuration on the left is from data for the
monoclinic phase at 50 K and the one on the right is from data for the body-centred cubic phase at
190 K.
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Figure 4. Distribution of TiO6 rotations as described using geometric analysis. The upper graph
shows the x , y rotor distributions, and the lower graph shows the z rotor distributions (figure
reproduced from [25]). Crystal structures of the high-temperature (top) and low-temperature
(bottom) phases of SrTiO3 are also illustrated, highlighting the TiO6 octahedra and showing the
Sr cations as spheres.

Figure 4 shows the distribution of TiO6 octahedra in the configurations produced by
RMCProfile fitting of data from the GEM diffractometer at ISIS collected at various
temperatures above and below the phase transition. The distributions were determined using
geometric analysis (GA) and by comparing the RMC configuration with an ‘ideal’ cubic
configuration. RMC + GA is a very useful combination and has been used and described by
us elsewhere [26]. Here it was used to show the change in, and distribution of, the octahedral
tilts in the perovskite structure with temperature. Looking down the x and y directions of the
structure there is no tilting of the octahedra, only a distribution due to thermal vibrations centred
at 0◦. However, looking down the z direction the distribution clearly has maxima at about ±2◦
below 105 K, and then a single maximum above this temperature as the system has transformed
to the cubic structure.
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This study showed that RMCProfile could indeed be used to probe very subtle structural
changes. The same data were later used to study the phonon modes in the structure; here it
turned out that the polyhedral restraints on the octahedra left the Sr atoms to absorb too much
of the structural disorder in the early minimization steps. While not a general problem for
most studies, when looking for the phonon modes involving the Sr atoms this gave spurious
results. It was for this reason we implemented the distance window constraints. When
this constraint was used in place of the polyhedral restraint the phonon mode information
obtained made much more physical sense. The full details of this study have been published
elsewhere [18, 19].

The study of SrTiO3 also encouraged us to study Cax Sr1−xTiO3. Here there is cation
disorder between the strontium and the calcium ions as well as octahedral tilting. We studied
three compositions of varying concentration of calcium and strontium. To cope with the large
amount of atomic motion required to exchange cation positions we implemented the swap
moves algorithm described in section 5.4. This was the first study using RMCProfile to model
cation disorder and was a particularly challenging example. This is because the effect of cation
ordering on the pair distribution function D(r) is actually quite small due to the overlap of
the cation–cation peaks with Ti–Ti and several O–O peaks. Briefly, for the case x = 0.5 the
RMC predicted a long-range rocksalt-type ordering of the Ca/Sr cations that was confirmed
by a subsequent Rietveld refinement. We demonstrated that this is a robust result through
running many repeated RMC simulations with quite different initial configurations and different
sample sizes. For the cases x = 0.2 and x = 0.8 long-range order will not be sustained with
such large differences in the numbers of Ca and Sr cations, but in the former case the RMC
shows significant short-range order and evidence for concentration fluctuations. More details
are provided in a separate paper in this special edition [27].

6.3. MnO

The classical antiferromagnet MnO was chosen as an initial case study with which to test the
newly implemented magnetic scattering calculations in RMCProfile [28]. This same system
had previously been studied using RMCPOW [29], and so serves as an ideal benchmark against
which to evaluate the effectiveness of our approach. MnO has been the centre of a large body
of systematic magnetic structural investigations that span more than 50 years [30–32]. At
room temperature, the material has the rocksalt structure and is paramagnetic. It undergoes
a paramagnetic-to-antiferromagnetic transition at a Nèel temperature of TN = 118 K. This
magnetic transition is coupled to a structural phase transition, in which the lattice collapses
slightly along a single [111] axis to give a low-temperature structure with rhombohedral lattice
symmetry. The antiferromagnetic phase is characterized by planes of ferromagnetically aligned
Mn spins perpendicular to the unique [111] axis (and hence parallel to the planes themselves),
whose alignment direction alternates between successive planes (see inset to figure 5). The
magnetic Bragg intensities are sensitive only to the angle between the antiferromagnetic
stacking axis and the spin alignment axis, and so the orientation of the spins within the (111)

ferromagnetic planes was not known [33].
Total neutron scattering data were collected on a sample of MnO at 10 K using the GEM

instrument at ISIS. The data were corrected and normalized following the usual procedures.
The RMCProfile code was used to refine atomistic and spin configurations against the
experimental F(Q) and Bragg profile functions. The reciprocal space fit obtained is shown in
figure 5, where it is compared to that obtained without consideration of the magnetic scattering
contribution. A supercell of the known magnetic unit cell, with a volume approximately 1000
times larger than the rocksalt fcc cell of the lattice, was used for the RMC calculations.

12
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Figure 5. RMC fits to experimental S(Q) data for MnO at 10 K: (top) as calculated from the nuclear
RMC configuration alone and (bottom) including the magnetic contribution Smag(Q) determined
from the RMC spin configuration using equation (22). The average magnetic structure of the Mn
sublattice is shown in the inset.

The particular choice of cell facilitated the RMC calculations as its axes were orthogonal
for arbitrary rhombohedral distortions. Even when started from spin configurations with
entirely random spin orientations, the refinement procedure reproducibly yielded equilibrium
magnetic structures that showed essentially identical antiferromagnetic alignment patterns that
corresponded precisely to the known magnetic structure. In each case the spin directions were
aligned perpendicular to the [111] stacking axis, although different runs produced different
‘preferred’ orientations.

Upon closer analysis, the RMC configurations showed evidence that the rhombohedral
lattice symmetry had been broken, albeit only very slightly. It has been known for some
time that the magnetic structure of MnO is inconsistent with a rhombohedral lattice, as a spin
alignment direction perpendicular to the stacking axis automatically broke the requisite three-
fold rotational symmetry. What was observed in the RMC configurations was that the average
Mn and O atom positions had systematically shifted from their presumed values in a manner
that resembled a frozen-in phonon mode with propagation vector [ 1

6
1
6

1
6 ]∗. This distortion gave a

monoclinic lattice whose symmetry was commensurate with the associated magnetic structure.
Indeed the periodic displacements of the nuclear lattice were observed to be coupled with an
out-of-plane spin modulation, which propagated throughout the magnetic lattice with the same
periodicity. Moreover, the symmetry lowering seen in this transition potentially allowed some
sensitivity in the neutron scattering data to the particular spin alignment direction within the
ferromagnetic planes. A very modest but consistent preference was noted for alignment along
the 〈112̄〉 directions, which agreed with earlier theoretical predictions.

What emerged from this study was that RMC is potentially a highly valuable tool for
investigating the rich and complex information concerning magnetic structure contained within
neutron total scattering data. Moreover, the ability to refine magnetic structures using random
spin configurations as a starting point avoids the assumption of a particular structural model in
the refinement process.
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7. Summary

We have reported the development and capabilities of a new RMC method for polycrystalline
materials, as incorporated in the new program RMCProfile. This new program has been used
to successfully model simultaneously the Bragg and diffuse components contained within total
scattering data of many interesting crystal systems. This has resulted in models that reproduce
both the short-range aspects of the structure together with the long-range crystallographic order.
These models have been analysed to gain the maximum amount information from the total
scattering measurements. In addition to the examples given in this paper RMCProfile has
been used to study piezoelectric materials and their thermal development [34]; negative thermal
expansion materials and the mechanism of contraction on heating [35, 36]; bond distributions
in silica glass [37] and even to extract phonon and spin-wave dispersion curves from powder
diffraction data [18, 19, 38]. Clearly the combination of RMCProfile and total scattering data
is a powerful tool for the study of disordered polycrystalline materials.
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Appendix

In this appendix we report one test case for the atom swapping algorithm, namely Sr/Ti ordering
in the cubic perovskite SrTiO3. In reality the Sr and Ti atoms are perfectly ordered on very
different sites, with coordination numbers 12 and 6, respectively. Because we expect no other
ordered pattern, and because there is a high contrast between the neutron scattering lengths
of the two atomic species (neutron scattering lengths for Sr and Ti are 7.02 and −3.44 fm,
respectively) RMC simulations on this example provide a good test of how well the algorithm
works.

Experimental data for this test case have been described previously [25]. We took the data
for a temperature of 293 K.

To start the tests of the swapping module we used an equilibrated configuration.
Figure A.1(a) shows a RMC configuration resulting from a good fit of neutron scattering data of
SrTiO3 at 293 K. Ti atoms and Sr atoms are ordered on both long-range and short-range length
scales. Ignoring the oxygen atoms, the Ti and Sr atoms are ordered in a CsCl arrangement,
each with eight first neighbours of the opposite type and six second neighbours of the same
type. The D(r) function and the n(r) values calculated from the configuration are displayed in
figure A.1(a).

Our first test was to simply allow the swapping module to rearrange the Sr and Ti atoms at
random (unguided by the experimental data, and without atom displacements). The resultant
configuration is shown in figure A.1(b). It explicitly shows Ti and Sr atoms exchanged their
positions. Figure A.1(b) also shows the significant effects on D(r) and n(r). Note that the first
peak in the D(r) function, which corresponds to the ordered Ti–O distance, has swapped from
being negative (due to the negative scattering length of Ti) to positive (because Sr has a larger
positive scattering length).

Our second test was to see if the swapping procedure will bring the disordered
configuration in figure A.1(b) back to the ordered configuration in figure A.1(a). The result
of this test is shown in figure A.1(c). The configuration looks very similar to the ordered
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Figure A.1. RMC configurations of SrTiO3 at 293 K (left), with corresponding D(r) (middle) and
n(r) (right) functions for models (a) without atom swapping, (b) after the atoms have been allowed
to swap at random and (c) after the atoms have been allowed to order following a randomization
stage.

structure in figure A.1(a). The D(r) function now fits well (compared with the D(r) functions
in figure A.1(a), to which we expect the simulation to converge, and in figure A.1(b), which was
the starting point). The n(r) function for the equilibrated configuration shown in figure A.1(b)
has returned to being close to that of the initial ordered structure (figure A.1(a)).
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